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Properties of "position-space" or "cell-type" renormalization-group 
transformations from an Ising model object system onto an Ising model 
image system, of the type introduci~d by Niemeijer, van Leeuwen, and 
Kadanoff, are studied in the thermodynamic limit of an infinite lattice. In 
the case of a Kadanoff transformation with finite p, we prove that if the 
magnetic field in the object system is sufficiently large (i.e., the lattice-gas 
activity is sufficiently small), the transformation leads to a well-defined 
set of image interactions with finite norm, in the thermodynamic limit, and 
these interactions are analytic functions of the object interactions. Under 
the same conditions the image interactions decay exponentially rapidly with 
the geometrical size of the clusters with which they are associated if the 
object interactions are suitably short-ranged. We also present compelling 
evidence (not, however, a completely rigorous proof) that under other 
conditions both the finite- and infinite-p (" majority rule") transformations 
exhibit peculiarities, suggesting either that the image interactions are 
undefined (i.e., the transformation does not possess a thermodynamic limit) 
or that they fail to be smooth functions of the object interactions. These 
peculiarities are associated (in terms of their mathematical origin) with 
phase transitions in the object system governed not by the object interactions 
themselves, but by a modified set of interactions. 
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1. I N T R O D U C T I O N  

Renormal iza t ion-group methods have played an extremely impor tan t  role in 
statistical mechanics in the last few years/1~ They have been remarkably  

successful when applied to a variety of problems in the field of phase transi- 
tions and critical phenomena.  Almost  all the interesting applications have 
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involved transformations which are only approximate. Usually it is assumed 
that these are approximations to transformations which, in principle at least, 
are exact, but are too difficult to carry out in practice. Despite the obvious 
practical importance of renormalization-group methods, very little seems to 
be known about the mathematical properties 2 of exact transformations 
except in the few cases where they can be carried out explicitly in closed 
form. 3 In this paper we are concerned with the question of whether such exact 
transformations actually exist in the thermodynamic limit, and whether they 
have certain properties which are commonly assumed (implicitly if not 
explicitly) in actual applications. 

A wide variety of renormalization-group transformations have been 
used to study phase transitions. In this paper we shall consider "position 
space" or "real  space" (in contrast to "momentum space") or "ce l l "  types 
of transformations of Ising models onto Ising models. (4-6) These transforma- 
tions can be described fairly simply, so there is no particular difficulty in 
posing precise mathematical questions. In addition, a great deal is known 
about the existence or nonexistence of phase transitions and the properties 
of correlation functions in Ising models, and some of this information is 
quite useful in working out properties of the transformations. 

A renormalization-group transformation is usually described as a 
mapping N from one Hamiltonian or set of interactions (we use the two 
terms interchangeably) onto another, 

H '  = ~ ( H )  

In applications it is usually assumed that ~ has the following properties in 
the thermodynamic limit of an infinite system: 

(i) The transformation, ~ is well defined for H belonging to a suitable 
class of interactions. 

(ii) If  the interactions in H decrease rapidly with distance (in some 
appropriate sense), those in ~ ( H )  also decrease rapidly with distance (in 
the same or perhaps some different sense). 

(iii) The transformation ~ is smooth in the sense that the various terms 
in ~ ( H )  depend smoothly on parameters which appear in H. 

(iv) The transformation ~ possesses various fixed points. 
In this paper we shall be concerned solely with properties (i)-(iii). In 

most applications of renormalization-group methods, these properties are 
exhibited explicitly by the approximate transformations employed, and since 
the thermodynamic limit is taken implicitly rather than explicitly, the issues 
raised by such a limit are not discussed. Nonetheless, it is our opinion--  

2 Probability distributions for block spins have been studied by Gallavotti and co- 
workers. (2) 

3 A number of examples are discussed by Nelson and Fisher. c3) 



Position-Space Renormalization-Group Transformations 501 

amply confirmed, we believe, by the results reported below--that  the 
existence of properties (i)-(iii) for an exact ~ is a nontrivial matter. Our 
results are both positive and negative. In certain cases corresponding to 
low density or high magnetic field (in lattice-gas and magnetic language, 
respectively), we are able to show quite rigorously that at least some interesting 
types of transformations do possess properties (i)-(iii). In other cases we 
are able to show, or at least present very plausible arguments, that the 
transformations do not possess at least one of these properties and that they 
instead exhibit a rather peculiar behavior. The peculiarities are closely 
related to phase transitions in a system whose Hamiltonian is a modified 
form of H. So far as we know, such peculiarities have not been seen in 
approximate transformations, or at least their source has not been identified 
as due to a modified Hamiltonian. 

Position-space (and other) renormalization-group transformations are 
customarily introduced by means of formulas which make perfectly good 
sense for a finite system, and we follow this procedure in Section 2.1. The 
task of extending these transformations so that they possess a proper thermo- 
dynamic limit has received little if any attention in the renormalization-group 
literature, and hence we provide in Section 2.2 an informal introduction to 
and motivation for the formal procedures described in Sections 3 and 4: 
states of infinite systems and equilibrium equations, respectively. These 
procedures are used in Section 5, together with the equations of  Gallavotti 
and Miracle-Sole, to establish properties (i)-(iii) for Kadanofftransformations 
with finite p in the limit of low activity. Various examples in which at least 
one of these properties seems to be violated are discussed in Section 6. Our 
conclusions are summarized in Section 7 along with a discussion of their 
possible significance for the renormalization-group enterprise. 

2. POSITION-SPACE R E N O R M A L I Z A T I O N - G R O U P  
T R A N S F O R M A T I O N S  

2.1. Transformat ion on Finite Systems 

The general transformation we wish to consider relates the 
"Hamil tonian"  or set of interactions H '  for an " image"  system to the 
interactions H for a finite "ob jec t"  system through a formula 

exp H'(.r) = TraIT(,, . )  exp H(~)I (2.1) 

Here ~ stands for a collection of Ising spin variables as = +_ 1, which form 
the object system, where the subscript i labels sites of a finite lattice fL The 
real-valued function H(e)  is the usual Hamiltonian multiplified by a factor 
of ( -  1/kT). The Ising variables ~ -- + 1 for i in a finite lattice ~ ' ,  denoted 
collectively by % form the image system. The quantity T(~-, ~), which may be 
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regarded as a conditional probability, satisfies the conditions 

T(r, or) > 0 (2.2) 

TrdT(r,  ~)] = ~ ~ . . .  T(r, ~) = 1 (2.3) 
T1 ~2 

We use the abbreviation Tr~ (trace) for a multiple sum over all the r variables, 
and Tr~ for the corresponding sum over the e variables. The condition (2.2) 
ensures that the right side of (2.1) is nonnegative, and hence H '  is well 
defined (though it might possibly have the value -oo). 

The Gibbs probability distributions p and O' for the object and image 
systems, respectively, are given by the usual formulas: 

p(~) = [exp H(~)]/Tr~[exp H(cr)] (2.4) 

p'(r) = [exp H'(r)]/Tr,[exp H'(r)] (2.5) 

From (2.1) and (2.3) it is evident that 

p'(r) = Tr,[T(r, e)p(e)] (2.6) 

Hence it is possible to think of the transformation from H to H '  in (2.1) as 
consisting of three steps indicated symbolically by 

H---* p--> p'---* H' (2.7) 

where the first two arrows correspond to formulas (2.4) and (2.6), while the 
third is the inverse of (2.5): finding a set of interactions H '  which will generate 
p'. [Strictly speaking, (2.5) will only define H '  up to an additive constant 
which is unambiguously determined by (2.1), but this is not important for 
our purposes.] Although (2. I) and (2.7) are equivalent for finite systems, (2.7) 
has some advantages when discussing the thermodynamic limit, as we shall 
see in Section 2.2. 

In Sections 5 and 6, we shall be interested in transformations T of the 
following form. We suppose there is a function mapping f2, or a subset of f2, 
onto f~' with the significance that the set C(j) of sites in f~ which are mapped 
onto a specific si tej  in f~' are the object spins lying within the j th  "cel l"  and 
thus associated with the image spin rj. The Kadanoff (a,m transformation is 
given by 

T(r,~) = ~c, [2cosh(P E~c~j>~) ]-lexp[prJ ~c,jCh] (2.8) 

where p is a real number which may be thought of as a coupling between the 
object spins in a particular cell and the corresponding image spin. One 
could, of course, allow p to vary from cell to cell, but we shall only consider 
the case in which it is a constant, and in which all the cells have the same 
size and shape and form a regularly spaced lattice. 
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We shall refer to the special case in which each site in f2 is in a separate 
cell as model I. In this case (2.8) has the simple form 

T(r,~) = (2 coshp) - 'a '  exp[p ~ %.o,] (2.9) 
./eEl 

where we denote by IA[ the number of elements in a set A, and where the 
corresponding sites in f2' and f2 are labeled with the same indexj. A general- 
ization of model I, called model II, is obtained by using ceils C(j) containing 
only one object site, which we denote by (j), but in which the union of the 
Cj comprises only some fraction of the sites in fL That is, each image spin 
is coupled to a single object spin, but there are object spins coupled to no 
image spin. The appropriate transformation formula, 

T(%a) = (2 coshp)-ra" exp[p j~a, ,j%)q (2.10) 

is similar to (2.9). Note that the special sites (j) in s are assumed to form a 
regular lattice. Neither model I nor model II is of practical interest for 
renormalization-group calculations, but their simple structure makes them 
useful for studying the thermodynamic limit. 

The transformations (2.8)-(2.10) have well-defined limits as p goes to 
+oo. In particular, (2.8) becomes the "majority rule" transformation first 
introduced by Niemeijer and van Leeuwen, (~) (2.10) becomes a "decimation" 
transformation, 4 and (2.9) becomes the identity transformation in this limit. 

2.2. The Thermodynamic Limit 

The problems which arise when taking the thermodynamic limit of (2. I) 
or (2.7) are best discussed in terms of a specific example. Let f2 be all the 
sites of a square (or simple cubic) lattice falling inside a large square (or 
cube), and let 

H(e) = K ~  cr,~r, + h ~ a ,  (2.11) 
<i j> t 

where (tj> denotes a nearest-neighbor pair of sites and the summations are 
restricted to sites within f2. Let T be of the form (2.8). Let the Gibbs distribu- 
tions for the object and image system and the Hamiltonian for the image 
system be pa(e), pn'(r), and Ha'(r), respectively. We now wish to know what 
happens to each of these quantities as f~ expands until it encompasses all the 
sites of an infinite lattice s and fY (which we assume is also a large square 
or cube) expands in a corresponding manner. 

4 The name comes about because p' can be calculated by summing p(a) over all aj 
except at the special sites (j), and regarding the result as a function of the remaining 
variables ~ ,  = ~-j. The variables summed over are considered "decimated." 
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While it is not useful to speak of the probability of a particular con- 
figuration of an infinite system, one can introduce a probability measure p 
(the symbol t~ is used from Section 3 on for the lattice-gas counterpart of p) 
on sets of configurations, and there is a well-defined sense in which pa can 
converge to a limit p. In general this limit is not unique, though one can 
always choose a particular sequence of squares f2 such that pa converges to 
a limit. For  the transformations T of interest to us, convergence of the pa 
guarantees that of the Oa', and the limits are related by the analog of (2.6) 
for an infinite system. (Details are given in Section 3.) 

The image Hamiltonian Ha'(~') will always exist if g) is finite, but its 
form will, in general, be much more complicated than (2.11): there will be 
one-spin interactions, two-spin interactions (not limited to nearest neighbors), 
three-spin, etc., up to and including a term involving all the r's in f~'. And 
unlike (2.11), where f~ appears only in the limits of summation, one must 
expect that each term in Ha'  will have an explicit dependence on f2. For  
example, Ha '  will include a term K'~rj for a particular pair of sites i and j,  
and K~'j will be a function of f~ as well as of the K and h in (2.11). 

The first problem in showing the existence of a thermodynamic limit 
for H '  is to demonstrate that K'j, along with all the other coefficients in H ' ,  
tends to a well-defined limit as f2 becomes infinite. In addition one must show 
that the limiting H '  has a proper relationship with the limiting probability 
measure p'. This requirement is not trivial, as can be seen by considering 
the following example. For a finite system f2', let 

HE= g'lf2'1-1 ~ *,*j + h ~ ~, (2.12) 

This is the well-known "equivalent-neighbor" model, which gives rise to a 
"mean-field" phase transition as I•'1 becomes infinite (see, e.g., Ref. 7). 
Note, however, that the interaction between any pair of spins tends to zero 
as [ f~'l ~ oo. Thus one might be tempted to conclude that the thermodynamic 
limit for H' is independent of the value of K'. The limiting probability 
distribution, however, depends on K'. 

This example is artificial in that (2.12) does not arise as the result of a 
transformation of the form (2.1). However, there is no reason to suppose a 
priori that such transformations do not yield equally "pathological"  results, 
and hence one needs to require something stronger than term-by-term 
convergence of the interactions in Ha '  in order to achieve a satisfactory 
thermodynamic limit for (2.1). 

An alternative approach is to try and work out the properties of a 
transformation of the form (2.7) applied to an infinite system. The first 
arrow in (2.7), associating the state of an infinite system with a set of interac- 
tions, has been studied extensively3 8-11~ In particular, the equilibrium equa- 
tions introduced by Dobrushin (9~ and by Lanford and Ruelle (1~ permit 
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one to associate with any H satisfying some fairly mild conditions a "Gibbs  
state" p, and hence are a generalization of (2.4). (There may be more than 
one p associated with a particular H.) The second arrow in (2.7), from 9 to 
p', is easy to define for an infinite system (Section 3.3). Finally, if p' is a 
Gibbs state corresponding to some H ' ,  the latter is uniqueJ 12) Thus the final 
step in (2.7) (though not the first step) is unambiguous within this framework, 
if it can be carried out at all. 

In this paper we adopt the point of  view that the thermodynamic limit 
of a renormalization-group transformation on an Ising model consists of the 
three steps in (2.7) carried out for an infinite system. However, our arguments 
are based in large part on taking the infinite limit of a finite system. This is 
useful both as a source of physical insight and as a method for constructing 
proofs. Thus, from another point of view, our arguments may be considered 
as supplying the technical details of sufficient conditions to rule out patho- 
logical behavior similar to that of (2.12). 

The concepts of states of an infinite system and equilibrium equations 
for these states are, unfortunately, somewhat technical and not familiar 
to many physicists working in statistical mechanics. Since they are an 
essential part of our arguments in Sections 5 and 6, and also because we 
require certain (mostly minor) generalizations of  previously published results, 
the necessary facts are presented as a series of theorems in Sections 3 and 4. 
The proofs (in some cases) and literature references (in other cases) will be 
found in Appendix A. 

3. STATES OF AN INFINITE SYSTEM 

3.1. Continuous Functions 

In this section we shall use "lattice-gas" rather than "Ising-spin" 
language. The connection is as follows. Let s be a countably infinite set of 
points or lattice sites. If  % = + 1 we shall say that the site j is occupied by a 
particle, while if crj = - 1 the site is empty. A configuration X is the set of 
occupied sites in ~ ,  and the space of  configurations is thus the set 

YC = ~(-~'3 (3.1) 

of all subsets of ~ .  In o~ we introduce a topology with a base given by the 
cylinder sets 

IA(A) = { X e J - C :  X n A - - - A }  (3.2) 

where A is a finite subset ot'Se and A is a subset of A. We shall use the letters 
A, B, C, A, and ~2 to denote finite subsets of Se (including the null subset ~) ,  
and X, Y, and Z for subsets which may be finite or infinite. 

The topology of oU can be conveniently characterized by sequences. A 
sequence Xj of subsets of ~ converges to a set X if for every finite A, 

Yj n A = X n A (3.3) 
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for all j sufficiently large. The space ~(( is compact, which means that every 
sequence Xj possesses some subsequence which converges to some X. A 
real or complex-valued function f on 0~ is continuous if 

f (X )  = l imf(Xj )  (3.4) 
J--* oo 

for every X and every sequence J(i converging to X. I t  is uniformly continuous 
if, given any E > 0, there is a finite A such that 

I f (X)  - f (  Y)[ < ~ (3.5) 
whenever 

Xc~ A = Y n  A (3.6) 

A sequence of functions f j  converges uniformly to f if for any ~ > 0 there is 
a k such t h a t j / >  k implies that  

I f (X)  - f~-(X)[ < ,  (3.7) 
independent of X. 

Theorem 3.1. Any continuous function f e n  ~e" is uniformly continuous, 
bounded, and uniquely determined by its values on the finite subsets of  L~'. I f  
a sequence of continuous functions f j  converges uniformly to a function 
f ,  then f i s  continuous. 

Theorem 3.2. Let f be a function defined on the finite subsets of 5r 
with the property that for any ~ > 0 there is a finite A such that (3.5) is 
satisfied whenever (3.6) holds for finite sets X and Y. Then there is a unique 
extension of f to a continuous function on 3'd. 

3.2 Measures  and In tegra t ion  

The appropriate generalization of a probability distribution for a finite 
system f2 is a measure on d .  The measures of interest to us are completely 
characterized by their values on cylinder sets of the form (3.2). 

Theorem 3.3. Suppose that for every finite A c 2, ~ and every A c A, 
/~A(A) is a real, positive number:  

o ~ t,A(A) < ~ (3.8) 

In addition, suppose that these numbers satisfy a consistency condition 

t~M(B) = ~ /~A(A) (3.9) 
A ~ A : A c ~ M =  B 

for every finite A, every M c A, and every B c M. Then there is a unique 
measure tz(dY) on the a-ring generated by the cylinder sets IA(A) with the 
property that / *  

I~(IA(A)) = I tz(dY) -- /z~(A) (3.10) 
,11 A ( A )  
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Furthermore, i f f  is a continuous function on J~f~, its integral with respect to 
this measure is given by 

f f ( Y )  t~(dY) = lim ~ f(A)lzA(A) (3.11) 

Henceforth in this paper the term "measure"  will always refer to a 
measure of the type considered in the previous theorem. The state of an 
infinite system is a probability measure, one for which 

t~(~C) = 1 (3.12) 

or, equivalently, the linear functional on continuous functions given by 
(3.11) for such a measure. 

A sequence of measures ~j will be said to converge to a measure/z if for 
every finite A and A c A, 

tz(IA(A)) = lim tz~(IA(A)) (3.13) 
]--*co 

In fact, if for each A and A c A the limit on the right side exists as a finite 
number, which we can designate by /~A(A), it is easy to check that these 
numbers satisfy (3.8) and (3.9) and hence generate a measure/~ by Theorem 
3.3. 

Theorem 3.4. Letf j  be a sequence of continuous functions converging 
uniformly to a function f ,  and/z  s a sequence of measures converging to ~; 
then 

I'f(Y) ~(dY) = lim [ f j ( Y )  tzs(dY) (3.14) 
d j-- ,  Qo d 

3.3. Renormalization Transformations 

Let s and ~ '  be the countably infinite lattices for the object and image 
system, respectively, in the thermodynamic limit. A continuous conditional 
probability T(dX I Y) has the following properties: (i) For  a fixed Y c 2~', 
T(dX I Y) is a probability measure on ~ff' =~(Se ' ) .  (ii) For  any finite A ~ ~ '  
and A c A, 

TA(A[ Y) = T(IA'(A)[ Y) (3.15) 

is a continuous function of Y in J~((. Here IA'(A) is the cylinder subset of ~ '  
defined in analogy with (3.2). 

Theorem 3.5. Let T(dX] Y) be a continuous conditional probability. 
(i) I f  g is a continuous function on ~U', then 

f g(X)V(dXl Y) 

is a continuous function of Y. 
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(ii) I f  tz is a measure on 3(f, the numbers 

t~A'(A) = f TA(AI I1) I~( d10 (3.16) 

satisfy the conditions (3.8) and (3.9) of Theorem 3.3 and hence correspond 
to a measure/d, which we write as 

t;(dX) = f T(dX 1 Y) tz(dY) (3.17) 

on 3(('. Furthermore, if/~ is a probability measure, then so is t~'. 
A sequence of continuous conditional probabilities Tj will be said to 

converge uniformly to a limit if for every finite A and A in A the sequence 
TjA(AI IO converges to some function TA(A[ Y) uniformly in Y (the conver- 
gence need not be uniform in A or A). 

T h e o r e m  3.6. If  a sequence of continuous conditional probabilities 
Tj converges uniformly to  a limit, the limiting TA(AI Y) corresponds to a 
(unique) continuous conditional probability T(dX 1 10. Furthermore, if tzj is 
a sequence of measures on ' ~  converging to a limit tz, the sequence 

m'(dX) = f Tj(dZ110 I~j(d10 (3.18) 

converges to the measure/z' given by (3.17). 
The transformations introduced in Section 2 are special cases of the 

following product form. For each k ~ s let &(Y) be a continuous, real- 
valued function on ~ with the property 

0~< &~< 1 (3.19) 
Define 

T^(AIY) = [1-~ &(Y)[ 1--[ [ 1 -  tk(Y)] (3.20) 
LkeA _1 lceA\A 

where A\A denotes the complement of A in A. 

T h e o r e m  3.7. The quantities TA(AI10 defined in (3.20) uniquely 
determine a Continuous conditional probability T(dX[ Y) through (3.15), 
provided the t~ satisfy (3.19) and are continuous. 

4. I N T E R A C T I O N S  A N D  E Q U I L I B R I U M  E Q U A T I O N S  

4,1. Interact ions and W Funct ions 

A set of  interactions qb is defined to be a real-valued function on the 
finite subsets of  oW. We shall usually assume that 

, # ( ~ )  = o (4 . l )  

although a finite value for this quantity merely shifts all energies by the same 



Position-Space Renormalization-Group Transformations 509 

constant amount  and hence does not affect the Gibbs probability distribution. 
The norm of �9 is defined by 

lloll = sup ~ Iq~(A)l (4.2) 
i~,(~ A :" :'~eA 

which differs from the definition of Lanford and Ruelle <1~ in that we do 
not assume that qb is invariant under translations, and thus the sum may 
depend on the lattice site i. The qb(A) are interpreted as dimensionless energies 
in lattice-gas language. For  instance, if A = {i}, ~(A) is -~JkT, where ~ 
is the chemical potential at site i. 

The dimensionless energy [the usual energy times - ( k T ) - 1 ]  of  a finite 
configuration B is equal to 

In addition we define 

W(AIB ) = 

U(B) = ~ q~(A) (4.3) 
A ~ B  

U(A u B) - U(B) = W(A\B]B) (4.4) 

when A and B are finite. Even though U(B) is undefined, in general, when B 
is an infinite set, it is often possible to define W in cases where its second 
argument is infinite. This includes the case in which II qs]l is finite. 

Theorem 4.1. Suppose that 

II•ll < oo (4.5) 

Then for a fixed A, W(A]B) as a function of its second argument satisfies the 
condition given in Theorem 3.2, and hence possesses a continuous extension 
to J~U, which we shall denote by W(AIx). This function satisfies the con- 
sistency condition 

W(A w NIX) = W(A]B w X) + W(BIX ) (4.6) 

where A and B are arbitrary finite subsets of  2,e, and X is any subset of  ~ .  
The condition (4.5) turns out for some purposes to be unduly restrictive. 

It  is also not invariant under particle-hole transformations (Section 4.3). 
Hence it is convenient to adopt the conclusions of Theorem 4.1 as a definition 
which is sufficient for most of  the results of  this section. We shall say that a 
function W(A[X), whose first argument is always a finite set, is consistent 
if it satisfies (4.6) and continuous if for every A it is a continuous function of 
X. A sequence of functions Wj will be said to converge uniformly to a limit 
provided the limit 

W(A[X) = lim Wj(A[X) (4.7) 
j-~oo 

exists for every A and X a n d  is uniform in X f o r  a fixed A (but not necessarily 
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uniform in A). The main properties of W functions which we shall need 
later are summarized in the following two theorems. 

Theorem 4.2. I f  W(AIX ) is consistent, then 

W(~ IX) = 0 (4.8) 

for all X, I f  each Wj in a sequence is consistent and if the limit (4.7) exists, 
then the limit is consistent. I f  each Wj in a sequence is consistent and con- 
tinuous and the sequence converges uniformly, then the limit is consistent 
and continuous. A consistent and continuous W can always be written in the 
f o r m  

W(AIX) = , ~" ~(B) (4.9) 

B n ( A \ X )  r 

where 
q)(B) = ( -  1) Im ~ ( -  1) IAI W(AI;g ) (4.10) 

A = B  

and the sum in (4.9) is defined by choosing a sequence of finite sets C, which 
converge to X, evaluating the right-hand side with X replaced by Cn, and 
taking the limit n --~ ~ .  I f  �9 defined by (4.10) has a finite norm [see (4.2)], 
then W coincides with the function whose existence is guaranteed in Theorem 
4.1, and the right side of (4.9) is absolutely convergent. 

Note that (4.9) and (4.10) together imply that a consistent and con- 
tinuous W(A[X) is determined uniquely by its values as a function of its 
first argument  when X = ~ .  

Theorem 4.3. I f  W(A]X) is consistent and also a continuous function 
of X for every A with ]A] = 1, then it is continuous for any finite A. I f  
W~(A[X) is a sequence of consistent and continuous W functions with a 
limit, (4.7), which is uniform in X for every A for which [A[ = I, then the 
limit is uniform for every finite A, and the limit is consistent and continuous. 

4.2. Equi l ibr ium Equat ions 

Given a finite set A c 2# and some A c A as well as a measure tz on sr ~, 
we define a measure pA(A, dX) on 

5UA = ~(~~ (4.11) 

through the requirement that 

I~A(A, IMA(B)) = t~(IA~M(A W B)) (4.12) 

where M is a finite set in ~ A ,  B c M, and 

IzaA(B) = { Y ~ S(  a: Y n M = B) (4.13) 
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The probability measure t z is said to be a Gibbs state with respect to a con- 
sistent and continuous W(A]JO providedthat  the equilibrium equations 

e- W(AIX)tzA(A , dX) = t~A(~, dX) (4.14) 

are satisfied for every finite A c La and every A c A. That is to say, if g is 
any continuous function on Js 

~ g(X)e -w(AIx, ,a(A, aX) = ( g(X) ,A(~, dX) (4.15) 

In view of the fact that W(~ [X) vanishes, (4.15) is equivalent to the assertion 
that the left side is independent of A for A c A. 

Theorem 4.4. Let Wj be a sequence of consistent and continuous W 
functions converging uniformly to a limit W, and let t~y be a Gibbs state with 
respect to Wj. If  the t~y tend to a limit tz [in the sense of (3.13)], then tz is a 
Gibbs state with respect to W. 

The utility of this theorem is sometimes enhanced through the following 
observation: 

Theorem 4.5. Let tzj be a bounded sequence of measures on JY', that 
is, suppose there is a number M < oo such that 

m( • )  < M (4.16) 

for all j. Then there is always a subsequence converging to a limit. 

Theorem 4.6. Let iz(dY) be a Gibbs state with respect to a consistent 
and continuous W. Then 

exp[W(A[ Y)] = lim IzA((A U Y) n A)/tZA(Yn A) (4.17) 
A--* L.ce 

and, in particular, 

exp[W(A[~)] = lim tzA(A)/I~A(g) (4.18) 
A - * * ~  

The equilibrium equations may be thought of as a generalization to an 
infinite system of the usual prescription, (2.4), of probabilities for a finite 
system; that is, they provide a relationship between the interactions (or 
"Hamil tonian")  embodied in r or W and the probability distribution 
represented by tz(dY). In contrast to a finite system, there may be more than 
one measure or equilibrium state associated with a set of interactions; this 
situation can arise at a phase transition (see Lanford and Ruelle<l~ How- 
ever, given a Gibbs state, the corresponding interactions are uniquely 
determined. 

It is also possible to write down the equilibrium equations in a fairly 
natural way for a finite system regarded as part of an infinite system (Section 
4.4). Then Theorem 4.4 may be used to discuss the thermodynamic limit. 
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4.3. Par t i c le -Ho le  Transformat ions  

A particle-hole transformation on the set R c L,r may be thought of as 
replacing a~ by -a~  for each i E R, or as the one-to-one mapping of ~(~q~) 
onto itself given by the symmetric difference: 

Y--> Y = R A y  = (R u Y ) \ (R  n Y)  (4.19) 

This mapping induces a natural transformation of functions: 

f --> f ( Y )  = f ( R  A Y)  (4.20) 

and of measures: 

/~--> ~; /TA(A) = /~A(A A(R n A)) (4.21) 

The transformation of a W function is a bit more complicated. The desired 
result is obtained using (4.4), assuming that the energy U transforms according 
to (4.20). Thus, as long as both R and X are finite sets, we can write 

W ( A [ X )  = U(A u X )  - U ( X )  = U(R  A(A W X ) )  - U(R  AX) (4.22) 

and hence 

W(AI x) = W ( ( A \ R ) \ X I ( R  A X ) \ ( R  n A))  

- W( (A  n R ) I X I ( R  AX)\(R n A)) (4.23) 

However, (4.23) also makes sense when R and X are infinite sets, so long as 
A is finite, and therefore we adopt it as a definition. 

Theorem 4.7. Let W and W be related by (4.23). I f  W is consistent, 
W is consistent; if W is continuous, W is continuous. Furthermore, if/~ is 
a Gibbs state with respect to a consistent and continuous W, # is a Gibbs 
state with respect to W, and vice versa. 

4.4. Finite System as Part  of an Inf ini te System 

For  a finite system there is, of course, no ambiguity in defining the 
Gibbs probability. In lattice-gas notation the analog of (2.4), for a finite 
subset ~ of  ~ ,  is ! 

= e U ( A ) / B ~ g  ~ e U(B) (4.24) 

I f  A is a subset of  f~ and B C A, we define 

 A(B) = v (A) (4.25) 
A ~ g ~  

A n A = B  

I t  is convenient to extend v to a measure t~ a on ~c defined by 

txAa(A) = 2-JA\alvA~a(A n ~)  (4.26) 
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This amounts to saying that each site outside f~ is occupied or vacant with 
probability 1/2, independent of what happens at other sites. Also, define 
Wa by 

Wa(A[X) = U((A u X) t'3 a)  - U(X n f~) (4.27) 

which is to say that all interactions involving sites outside f2 vanish. 

Theorem 4.8. The/xA a defined by (4.26) correspond, in the sense of 
Theorem 3.3, to a probability measure tL a satisfying (3.12). This measure is 
a Gibbs state with respect to Wa and is unique in the sense that it is the 
only probability measure satisfying (4.14) with W equal to Wa. 

5. RESULTS AT LOW ACTIV ITY 

5.1. General Strategy 

We shall show that i fp is finite, a Kadanofftransformation (2.8) applied 
to an object system in which the lattice-gas activity is sufficiently small (or, 
equivalently, the Ising model magnetic field is sufficiently large) yields 
interactions for the image system which are well-defined in the thermo- 
dynamic limit and possess various pleasant properties: they decrease rapidly 
with distance and depend analytically on various parameters describing the 
object system. 

The proof begins with an object system defined on a finite set of sites 
f~ = 5r The W functions for the corresponding image system, denoted by 
W~'(A]X), can be  expressed in terms of thermal averages of operators 
involving a finite number of sites in a modified object system, in which the 
original object Hamiltonian has been somewhat altered. The state ~,a of 
the image system is related to that of the object system/~a by an equation of 
the form (3.18). 

The equations of Gallavotti and Miracle-Sole are then used to show 
that under suitable conditions (low activity) p.~ tends to a limit ~ and 
W~'(A[ Y) tends uniformly in Yto a limit W'(A[ Y) as ~ tends to ~ .  Theorem 
3.6 then shows that/x 'a tends to a limit ix' given by (3.17). Since ~,a is a Gibbs 
state with respect to W~' (Theorem 4.8), it follows from Theorem 4.4 that 
~' is a Gibbs state with respect to W', and from Theorem 4.6 that this W' 
is unique. Thus the renormalization transformation is unique in the thermo- 
dynamic limit. 

The interactions qb for the image system can be obtained from W'(AI~ ) 
by means of (4.10). We derive explicit expressions for the interactions in 
terms of Ursell functions for the modified object system, and use these to 
show that �9 has a finite norm, (4.2), and various cluster properties. The low- 
activity condition also ensures that the interactions ~ corresponding to W' 
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obtained from W' using any particle-hole transformation, (4.19) and (4.23), 
also possess these pleasant properties. 

5.2. Expression for  W~' 

The Kadanoff transformation (2.8) for finite p can always be written in 
the form 

T(~', cr)= exp ~ [p,j ~ ai + ~ QDaD] (5.1) 
J e f f '  i (]) D~C(D 

where 

= I - [  (5.2) 
teD 

and % is one. The QD are real constants chosen so that 

[ ( )l exp ~ QDaD = 2cosh p ~ ~ (5.3) 
D c C(]) \ fee(i) / A 

These formulas, along with those in Section 2, can be translated into the 
lattice-gas language of Sections 3 and 4 by noting that a~ is the continuous 
function on subsets of s defined by 

21 if i e X  (5.4) 
~(X) = 1 otherwise 

and an analogous definition holds for ~-j as a function on ~(2~o,). Thus 
Ta,(A] Y) in (3.20) is equal to the right side of (5.1) if the argument of the 
~-'s is set equal to A and that of the cr's equal to Y, and, in particular 

tj(Y) = exp[p ~ a~(Y) + ~ QDaD(Y)] (5.5) 
k i~C(]) D c C(]) 

Upon combining (2.1) and (5.1), we see that the (dimensionless) energy 
U'(A) associated with a configuration A c fy is given by 

e x p U ' ( A ) = T r o @ x p [ H ( a ) + p  ~c~c A e ~ - p  ~ cry+ ~ ~ Q~a~]} 
~eC( ) ieC(~'\A) ./e~' DeC( j )  

(5.6) 

where 

C(A) = U C(j) (5.7) 
]~A 

Let Wa'(AIX ) be defined by means of (4.27), with U and f~ replaced by 
U' and f~' on the right side of that equation. Then with the help of (5.6) we 
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obtain the formula, if A n X = ~ ,  

expWa'(AlX)= <exp(2p ~c~A)c~))a,x (5.8) 

where, if O(e) is any function of the e= for i in f~, 

s = Tr~[C(e) exp Hx(~)]/Tr~[exp Hx(e)] (5.9) 

and 

Hx((z)=H(~ 2 ~ ' - P  2 ~'+ 2 2 QD~ (5.10) 
ieC(Xt~q') ieC(~q'IX) Ye~' D = C(]) 

is the Hamiltonian for the modified object system. The final term on the right 
side of (5.10), which we shall call the "counter  term," is a constant in the 
case of models I and II and can (for our purposes) be set equal to zero. The 
Hamiltonians H(e) and Hx(e) in (5.6), (5.9), and (5.10) refer to a set of 
sites f2 which is just C(f~') in the case in which all the object sites lie inside 
some cell, and which includes additional sites nearby those in C(f2') in cases, 
such as model II, in which not every object site is in a cell. [We shall, in 
particular, suppose that f~ is disjoint from C(j) for any j r f~', and that f~ 
tends to 5P as f~' tends to s 

5.3. Ga l lavot t i -M i rac le -So le  Equations 

The lattice-gas correlation functions for a finite system f~ c s are 
defined by 

pdA) = <nA>~ (5.1 l) 

where 

<dT)a = ~ C)(B)eV(~)/~e u<m (5.12) 
B c g ~  IB~a 

The energies U(B) are determined by the interactions q) through (4.3). The 
occupation variables are defined by 

n,(B) = { ;  for i eB (5.13) 
for i(~B 

HA ~ ~ I  ni 
leA 

Gallavotti and Miracle-Sole(~a) have shown that the correlation functions 
(5.11) satisfy certain linear equations. In the thermodynamic limit these 
equations can be written as a single vector equation 

p = a + K| (5.14) 

on the Banach space # of bounded functions of finite subsets of s with the 
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uniform norm equal to the supremum of  the absolute value of  the function. 
The vector ~ is given by 

= fzJ(1 + z~) if  A ={ i}  c~(A) (5.15) 
if IA[ # 1 

where 
z, = exp do(i) (5.16) 

is the activity at site i, and do(i) stands for do({/}). 

T h e o r e m  ft.1. I f  11 do [[ < 0% K~ is a bounded  opera tor  on ~ with norm 

Izl explldolll [ 2 e x p ( e x p [ l % [ [ -  1 ) -  11 (5.17) 
[[K| ~< 1 + lzl expll%[l 

where 
Izl = suplzd  (5.18) 

and do1 is obtained from do by setting the chemical potentials do(i) = 0 for  all 
i e s I f  IIK~[I < 1, and in part icular  if 

Izl explldo~]1 [2exp(exp]ldo~ll- 1 ) -  1] < 1 (5.19) 
1 + [z[ expildolll 

then Eq. (5.14) has a unique solution in g given by 

o(A) = lira oa(A) (5.20) 

More  precisely, given any e > 0 and any finite set A c s there is a finite 
set A, which will in general depend on the interaction do, such that 

Ion(A) - p(A)[ < e (5.21) 

whenever f2 ~ A. In particular,  if (5.19) is satisfied, it is possible to choose 
A so that  it is valid for  the Izl in question and also for all smaller values of  
[z[, with do~ held fixed. The solution p is a real analytic function of the 
interactions do in the region (5.19). 

ProoL The theorem is proved in a similar manner  to Theorem 1 of  
Gallavotti  and Miracle-Sole <la~ (see also Ruelle: Ref. 8, p. 32; and Ref. 14) 
with obvious changes to allow for a lack of  translational invariance. 

C o r o l l a r y  B.2. In the region (5.19) there is a unique Gibbs state /, 
(the limit as ~1 ~ .go of/~a) for  the infinite system. 

Proof. This follows from Theorem 5.1 because each solution of  the 
equilibrium equations yields a bounded  solution of  the Gallavott i-Miracle-  
Sole equations. ~ 
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Theorem 5.3. Let �9 be a set of interactions for an object system for 
which it is known that/~a converges to a unique Gibbs state/~ [e.g., assume 
that (5.19) is satisfied], and let 8 be the interactions for the modified object 
system (5.10) in the case in which X = ~ and f~' tends to s Then in the 
region 

I~l exp(ltS~ll + 4p) [2 exp(explI81H- l ) -  1] < 1 (5.22) 
1 + 1~1 exp(llS~ll + 4p) 

where ]2] and 8~ are the analogs for the modified object system of the [z[ 
and (I)1 previously defined for the object system, the Kadanoff transformation 
generated by (2.8) is well-defined and smooth in the thermodynamic limit, 
in the following sense: 

a. The quantity Wa'(A] X) defined by (5.8) possesses a limit 

W'(AIX ) = lim Wa'(AIX) (5.23) 

which is a continuous function of  X and a real analytic function of the 
interactions �9 of the object system. 

b. As t)' ~ s the interactions ~a'(A) for the image sys~m, which are 
related to W,'(AI;~ ) through (4.10), converge to limits ~'(A), related to W' 
through (4.10), which are analytic functions of the interactions (I). 

c. As s -+ ~a,, the state t~ '~ of the image system converges to a unique 
state/z' related to p for the object system through (3.17), with T(dX[ Y) given 
by (3.20) and (5.5). Furthermore, tz' is a Gibbs state with respect to W'(AIX); 
i.e,, it satisfies (4.14). 

ProoL The right side of (5.8) for a fixed A can be written as a sum of 
terms involving correlations of the form (~B)a,x with B c C(A) or, equiv- 
alently, since cr~ is 2n~ - 1, in terms of 

The existence of a limit 

oa(B; X) = (nB).,x (5.24) 

p(B; X) = lim pa(B; X) (5.25) 
~- - .  L.o 

is a consequence of Theorem 5.1 when �9 is replaced by 8. Note that Hx, 
(5.10), is related to H~, by adding a term 2pg~ for each i in Xc~ f~'. This 
alters the activities at such sites by a factor of e 4~, but does not change 81. 
Hence the extra 4p terms in (5.22) ensure that the condition (5.19) of Theorem 
5.1 is satisfied for any choice of X, and that the limit (5.25), corresponding to 
(5.20), is uniform in X for a given B. However, since only those B that are 
subsets of the finite set C(A) are in view, the limit is also uniform in B, and 
we conclude that the right side of (5.8), and thus the left, tends to a limit 
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uniformly in X. This limit is bounded away from zero in view of the obvious 
inequalities: 

exp[--2pIC(A)]] <~ exp(2P ~A)~) <<. exp[2p[C(A), ] (5.26) 

and hence we obtain the uniform convergence of (5.23). 
Theorem 5.1 also implies that the p(B; X) in (5.25) are real analytic 

functions of the interactions (b. But as the latter differ from �9 through the 
addition of certain terms [see (5.10)] dependent on p, it follows that the 
p(B; X), hence also the W'(A]X), are real analytic functions of the interac- 
tions qb. The properties of ~'  in part (b) of Theorem 5.3 follow from those of 
W'. Finally, part (c) is proved through the chain of reasoning already dis- 
cussed in Section 5.1. 

5.4. Decay of  Image Interactions 

Let H(~) be a Hamiltonian, for a finite spin system g2, with magnetic 
fields h~. Then the Ursell functions are defined by 

ua(A) = ~ log Za(h) (5.27) 

where 
Za(h) = Tr~ exp H(~) (5.28) 

and h denotes a vector with components h~. Thus, for example, 

un({i}) = (e~)a (5.29) 
ua({i,j}) = <a,%>a -- <e,>a<%>n 

By Theorem 5.1 these Ursell functions have a well-defined thermodynamic 
limit 

u(A) = lim ua(A) (5.30) 

in the region (5.19). 
For transformations on finite systems the image interactions can always 

be obtained by straightforward calculation. Setting X = ~ in (5.8), for the 
Kadanoff transformation (2.8) we obtain 

exp Wa'(AIN) = exp S=A ~ q)n'(S) = ( e x p  (2p ,~c~( a' e , ) ~ a . ~  (5.31) 

For simplicity consider model I. In this case 

where 

Z.(h) = Tr~ exp[H~(~)+ ,~,~ h,~r,] (5.33) 
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and ej is a vector whose components all vanish except the j th  component, 
which is unity. From (5.31) and (5.32) we find 

s~A ~ a ' ( S ) =  log2a(2p j~A ej ) - logZa(O) (5.34) 

To obtain explicit expressions for the image interactions, the following result 
is now useful. 

l .emma 5.4. If A is a finite set and P(x) is a smooth function, then for 
arbitrary vectors x;, 

This result is easily proved by induction on 1.41. Taking P = logZa 
and rewriting the right-hand side of (5.34), it readily follows that, for any 
A c ~ ' ,  

�9 =,(A) _- f:".., f [ d,, (5.36) 

where 

~a(AIh) = ~ log Za(h) (5.37) 

are the Ursell functions for the modified object system described by the 
Hamiltonian 

H~(o) + ~ h,e~ (5.38) 

A similar formula holds for the general Kadanoff transformation. If 
A c f2', and B c f2 consists of [A[ sites, one from each cell C(j) for j s A, 
we write B ~ C A. Using this notation, we find 

Hence, using Theorem 5.3, we obtain the following result in the thermo- 
dynamic limit. 

Theorem 5.5. Let q~ be the interaction for an object system H(o). 
Then in the region (5.22) the image interactions, obtained by applying the 
Kadanoff transformation (2.8) to the infinite object system, are given by 

q)'(A)= B~c A f :" . . . f a (B I ~A ~c<, t#j) ~ dtj (5.40) 
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We will now show that at sufficiently low activity (large magnetic field) 
the image interactions (5.40) in fact (i) have finite norm and (ii) fall off 
exponentially rapidly with the geometrical size of the cluster formed by the 
sites in A if the object interactions are suitably short-ranged. 

To show that the image interaction ~ '  has a finite norm at sufficiently 
low activity, we need to consider configurations with multiple occupations. 
A configuration X on ~ is defined as a multiplicity function assigning a 
nonnegative integer X(i) to each site i e 5e. In the sequel we will use X, Y, 
and Z to denote configurations, while retaining A, B, etc. to denote finite 
sets. This notation should not cause any confusion. The set of occupied 
points in the configuration X on ~ will be denoted by 

.~ = {ie~q~: X(i)  >1 1} (5.41) 
In addition, we set 

IX] = ~ X(i); X! = ~ X(i)[; h x = 1-~ h x(~) (5_42) 

and define the sum X + Y of two configurations by 

(X  + Y)(i) = X(i)  + Y(i) (5.43) 

The definitions (5.27)-(5.30) of the Ursell functions are extended by 
setting 

un(X) = (O/eh) x log Z.(h) (5.44) 
and 

u(X) = lim ua(X) (5.45) 

With these definitions the following result holds C13~ (see Appendix B). 

Lamina  5.6. Let qb be an interaction with ]l~[[ < ~ and let 

C(qb) = 21z [ expII ~1 ]1 exp(exp I[ qb~ [[ - 1) (5.46) 

Then the Ursell functions (5.45) satisfy the cluster property 

2C(qb) '~, (5.47) 

IXl =r 

for r > 1, in the low-activity region C(qb) < 1. 

Theorem 5.7. Let qb be the interaction for an object system H(a) 
with I[ ~11 < ~ .  Then the image interaction ~' ,  obtained by applying the 
Kadanoff transformation (2.8) to the infinite object system, has finite norm 

I1~"11 = sup ~ I~,'(A)I < ~ (5.48) 
j~&a, A~Y 

in the low-activity region defined by 

2l~l exp(ll+111 + 4p)exp(expll(blH - 1) < 1 (5.49) 
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Here ~b is the interaction for the modified object system (5.10) with Hamil- 
tonian H~. 

Proof. Given a finite set A c s consider the function 

where q is a vector with components qj i f j  e A and zero otherwise. Ifqs = 2p 
for all j e A, F(q) is just the image interaction cP'(A), by Theorem 5.5. By 
Theorem 5.1 and (5.49), F(R) is real analytic when ]qj] ~< 2p for all j e A .  
Its Taylor expansion at q = 0 is 

F(q) = ~ ~qq X--'~ (5.51) 
r = 0  X:~=A 

I X l = r  

In the model I case, we expand 

F ( q ) =  fqo'"" f ~(A ~at,e,) ~ dr, (5.52) 

2 = ~ x-at~ A qjej X--~ (5.53) 
r=tAI X X:'=A 

i X l = r  

where X - A denotes the configuration given by 

fX(j) - 1 for j e A (5.54) (X - A)(j) = LX( j  ) for j q} A 

Setting qj = 2p for all j e A, and assuming convergence, we find 

=~lal(2p)~ a(X) (5.55) 
r= X:X=A 

IXI = r  

tI~'II = sup~j~_~ [~'(A) I 

j ~ g o  ' r = l A I  Xz,~=A 
IXl = r  

m 

~< ~ (2p) r sup ~.  Ifi(X)[ 

I X l = r  

~< 2p + ~ ~=z \1 Z C(--~)] (5.56) 

where we have interchanged the order of summation, and used Lemma 5.6 

We now estimate 
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and the simple bound [a(X)l ~< 1 when IX 1 = 1. But now observe that by 
(5.49) 

1 (5.57) c(4) = 2lel expljtbl}l exp(explltb, j] - 1) < exp ( -4p)  ~< 1 +--~ 

Hence, 
@c(~b)/[1 - cffb)] < 1 (5.58) 

and I1~'11 < oo because (5.56) is a convergent geometric series. Notice also 
that by the above estimates the right-hand side of (5.55) is an absolutely 
convergent series, justifying (5.55) a posteriori. 

In the general case the Taylor expansion is 

r F(R) = ~ ~.. ~ \ ~ ]  " B ~ ~ q,%) X-q. (5.59) 
r = l a l  X:R= A BeC A t e a  iec(i) I 

I X [ = r  

Setting qj- = 2p for all j e A, we obtain 

(I)'(A) = ~ (2/7) r ~ ~ E a(B + r ) ( x -  A)! (5.60) 
r=lal x:.~=a ~ca y~cx-A X] Y! 

[Xl = r  

where we write Y e C x if Y is a configuration on s and X a configuration on 
s and for each j e LF' 

E Y(i) = X ( j )  (5.61) 
iec(i) 

From (5.60) we find 

qb'(A) = ~ (2p) r ~ ~. [ti(zZ.I.)I (5.62) 
r=lAl X:X=A a~cX 

IXl =r 

Hence finally, if [C(j)[ does not depend on j  e s we estimate 

i[dO'[[ = sup ~ I~'(A)I 
~ '  3"3") 

~< s u p ~  ~ (2p) r E ~'- lu(Z)l 
je/~'" " r=IAl X:2=A Z~C x 

IXl =r 
co 

~< sup~.(2p) ~ ~" ~xlfi(Z)[ 
je,~' r--~' l  X:2~j ZeC 

IXl =r 

~< ~ (2p)' J~'sup ~ 2 lu(Z)l 
r = l  t ") Z:ff,~,i 

IZl = r  
co 

~< If(j)r~_l(2p)rsup,~, ~. la(Z)l (5.63) 
= Z:Z~i 

IZ[ =r 

We conclude that [[ qb' [1 < oo as in the model I case. 
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To discuss the decay of interactions in more detail, we need some 
knowledge of the geometry of the lattices. We will assume that the lattice 
sites are located at points in Euclidean space. A graph is then a collection of 
straight lines between pairs of points on the lattice. The length of a graph is 
the sum of the lengths of its lines with respect to Euclidean distance (for a 
discussion of other distances see Duneau et al.(16)). A tree is a connected 
graph with no closed cycles. The geometrical size L(A)  of a cluster of sites 
A is the minimum of the lengths of all those trees that connect all the 
points of A and possibly arbitrary other points. (16) This is a more sensitive 
measure of the size of a cluster than the diameter, diam A, defined as the 
maximum of the lengths of all the lines joining pairs of points of A. 

Theorem 5.8. Let �9 be the interaction for an object system H(~) and 
suppose that q~ is short-ranged, or more generally, that for some X > 0 

I[qb[[x = sup E exL(A)[~(A)I < aO (5.64) 

Further suppose that the image lattice ~ '  consists of sites from ~ selected 
one from each cell. Then in the low-activity region, defined by 

2121 exp(lld)lllx + 4p)exp(expH~ll[x - l) < 1 (5.65) 

the image interactions (5.40), obtained by applying the Kadanofftransforma- 
tion (2.8) to the infinite object system, fall off exponentially rapidly with the 
geometrical size of the cluster A. Explicitly, 

I cb'(A)l <~ (2pKM)l~le -xuA) (5.66) 

where 

K = [C(j)[e diamc(j) (5.67) 

is a positive constant, independent o f j  because all the cells are assumed to 
have the same size and shape, and M is a positive constant depending on the 
interaction +1. 

Proof. Equation (5.40) holds by Theorem 5.5, because the region 
(5.22) contains the region (5.65). Duneau et al. (16) have shown that the Ursell 
function cluster property 

]u(B)[ ~< Mime  -xL(~ (5.68) 

holds in the region C(~)  < 1, with M a positive constant depending on ~1. 
Moreover, the 4p term in (5.65) ensures that (5.68) holds for the Ursell 
functions fi(BIh ) uniformly in h over the entire range of integration in (5.40). 
Thus 

[~'(A)I ~< (2p[C(j)[) IAI max [Mime -xL(m] (5.69) 
B e G  a 
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The result (5.66) now follows from the inequality 

L(A) <~ rain L(B) + IA] diam C(j) (5.70) 
B e G  A 

To prove this inequality, suppose the minimum on the right-hand side of 
(5.70) is attained for B = B*. Now consider the tree of minimal length 
connecting the points of  B* and possibly other points and join each point 
in B* with the point of n that lies in the same cell. This yields a new tree ~- 
which now connects the points of  A and whose length L(~-) satisfies 

L(A) <~ L(7) <~ L(B*) + IA[ diam C(j) (5.71) 

6. P E C U L I A R I T I E S  IN R E N O R M A L I Z A T I O N - G R O U P  
T R A N S F O R M A T I O N S  

We shall now present evidence that certain position-space renormaliza- 
tion-group transformations applied to certain object Hamiltonians lack one 
or more of the properties (i)-(iii) listed in Section 1. The evidence for the 
existence of certain peculiarities in these transformations is quite compelling 
(though it falls slightly short of  a rigorous proof). However, the precise 
nature of the peculiarities is somewhat obscure; various suggestions are 
considered in Section 6.3. 

6.1.  M o d e l  I 

The most  precise and unequivocal results are obtained in the case of 
model I with the object Hamiltonain given by (2.11) for sites on a square or 
simple cubic lattice. We are interested in the ferromagnetic case for which K 
is positive. It is known that the/zA(A) [see (3.10)] for the equilibrium state 
are real analytic functions of h and K, provided h > 0 or h < 0, and for all 
h when K is sufficiently small (K > 0). ~17) A phase transition occurs at h = 0 
for K sufficiently large, and at the phase transition (~rA) is a discontinuous 
function of h if I A ] is odd. ~1~) Here ( . - - )  denotes an average with respect to 
the equilibrium state. 

In model I each cell contains a single site. Upon identifying cell and site 
labels and formally taking the thermodynamic limit f2 -+ ~ ,  (5.8) yields, for 
A a single site, 

e w'ul~) = (e2~J)~ = cosh 2p + (crj)~ sinh 2p (6.1) 

where ( - - . ) ~  denotes an average with respect to the state corresponding to 
the Hamiltonian (5.10), with X = ~ ,  in the thermodynamic limit. In the 
case of model I, the counter term (involving Q's) in (5.10) is a constant, 
and thus Ha is given by (2.11) with h replaced by h - p. Hence for K suffi- 
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Fig. 1. Diagram showing where discontinuities arise in 
Eqs. (6.1) (dashed curve) and (6.2) (dotted curve.) The 
!arge dots are at K --- Kc. 

+0 

- p  

I 
K 

ciently large, @s)~ will be discontinuous as a function of the parameter  h 
at the value h = p (the dashed line in Fig. 1), and thus W'(jl;~ ) will be 
discontinuous for this same h. 

Note that this discontinuity takes place at a value of h for which the 
~A(A) for the object sys tem and hence the IzA'(A) for the image system are 
analytic functions of  h and K. Hence if (6.1) is to be taken seriously one has 
a situation in which the W' (and hence also the (b') associated with a state t~' 
exhibits singularities in a situation where the equilibrium state seems to show 
no anomalies. That  is the reverse of  what happens at an ordinary phase 
transition, in which the p~A(A) exhibit singularities when the interactions, or 
W, vary smoothly, and suggests the name "ant i  phase transit ion" for the 
phenomenon under discussion. However, there are various possible explana- 
tions for the apparent unsmooth behavior of  W' (see Section 6.3), and hence 
it seems best at present to retain the general term "peculiarity." 

In addition, near the point h = p, K = Kc, where Kc is the critical value 
of K for the object system (the upper limit of  the K values for which (e j )  is 
continuous at h = 0), one expects (as) ~ and the (~A)~, for [A] /> 2 to exhibit 
various "critical singularities" as functions of  h and K (see, e.g., Refs. 7 
and 19). These singularities will, of  course, be reflected in the W'(A];~). 
Furthermore,  at h = p and K = Kc the Ursell functions decay slowly with 
distance and this will also be reflected in W' and the interactions for 
the image system. Hence (6.1) and its analogs for IAI > 1 certainly 
suggest violations of  properties (ii) and (iii) of Section 1 in the case of 
model I. 

But is (6.1) to be taken seriously ? It represents a formal thermodynamic 
limit of  (5.8) in a case in which we are not able to show that W~'(AIX ) 
converges uniformly (in X) to a limit, and hence cannot make use of Theorem 
4.4. Indeed, it is precisely where (6.1) yields a discontinuous function of h 
that one must be most supicious about this convergence. Hence it may simply 
be that the transformation fails to exist in any well-defined sense. 

It  should be noted that the results of  Section 5 imply that (6.1) is valid 
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when h is sufficiently large. Hence, since the right-hand side is a n  analytic 
function for all h > p and h < p, and for all h when K is sufficiently small, 
it is certain that the analytic continuation of the correct W'(jl;J ) in the high- 
field region exhibits a certain amount of singular behavior in the region h > 0. 
What is not clear is the extent of  the region in which this analytic continuation 
is equal to the corresponding term in a continuous W'(AIX) associated with 
tz'(dY) through the equilibrium equations. 

Additional peculiarities can be obtained by performing a particle-hole 
transformation for the image system with R = ~a (see Section 4.3). The analog 
of (6.1) then becomes 

e x p [ -  W'(jlSf\{j})] = cosh 2p - (crs)~ sinh 2p (6.2) 

where Hao, which determines the state corresponding to the average ( .  �9 - ) ~ ,  
is given by (2.11) with h replaced by h + p. The expression (6.2) is analytic 
as a function of K and p for all h > - p  and h < - p ;  in particular along the 
dashed line in Fig. 1 where W'(jl;~ ) has discontinuities. However, (6.2) has 
discontinuities along the dotted line h = - p  in Fig. 1, at a location where 
(6.1) is analytic! 

Next let X in (5.8) and (5.10) be the set J/" formed by one of the two 
interpenetrating sublattices with the property that all the nearest neighbors 
of the sites on one sublattice fall on the other. (It is only at this point in the 
argument that we need a square or simple cubic, in contrast to a triangular 
or face-centered cubic lattice), and let j be a site on the other sublattice. The 
analog of (6.1) is then 

e w'(jl.'r = cosh 2p + (~s )x  sinh 2p (6.3) 

and the behavior of ( % ) x  must be determined by considering (5.10) with 
X = ~ .  This is the Hamiltonian for a system in a staggered magnetic field 
+ p  on JV" and - p  on ~L~~ addition to the field h contained in H(~). By 
replacing % by - %  on ~ / ~ ,  H ~  is transformed into a system with anti- 
ferromagnetic interactions, K replaced by - K  in (2.11), uniform field +p,  
and a staggered field h with opposite signs on X and ~ce\~. For  h = 0, 

<20~ such a Hamiltonian gives rise to a phase transition of the antiferromagnetic 
type for values of K exceeding a function K(p), with 

K(p) >i K~ (6.4) 

and equality only at p = 0. Translating these results back into the system 
described by H ~  before the transformation, one concludes that the right 
side of (6.3) is, almost surely, a discontinuous function of h at h = 0 provided 
p is not too large and K > K(p). 

For a general X it is hard to say, especially since Hx lacks translational 
invariance, what "peculiarities" may arise in W'(A[X) if one formally 
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Fig. 2. Peculiarities may be anticipated in the trans- 
formation for model I within a region such as that 
shown by the cross-hatching. 

+p 

- p  

K 

takes the thermodynamic limit of (5.8) for model I. However, in view of'the 
three special cases considered above, it is not unreasonable to suppose that 
there will be peculiarities of some sort in W'(AIX), for some values of A and 
X, if the object Hamiltonian has parameters h and 1/K lying in a region 
similar to the shaded area in Fig. 2. This region is indented along the 1/K 
axis because of the observation that when X = ,V" the peculiarities which 
occur at h -- 0 arise when K exceeds K(p), which is greater than Kc. It is, of 
course, possible that some other choice of X would give rise to peculiarities 
closer to the critical point at h = 0 and K = Kc, and in this sense Fig. 2, 
which is of course speculative, is also conservative: the region where 
peculiarities occur could be larger. 

6.2. Other Transformations 

6.2.1. General Strategy. The examples considered in the case of 
model I suggest the following strategy for producing peculiarities in other 
analogous renormalization-group transformations. One considers the 
modified object Hamiltonians produced by assigning definite values to each 
of the ~- variables. If  there is a set of parameters in the original object 
Hamiltonian which give rise to a phase transition in the state determined by 
the corresponding modified Hamiltonian, corresponding singularities can be 
expected, via the thermodynamic limit of (5.8), in the W' function for the 
image system--assuming, of course, that this procedure actually produces a 
W' which is, in some sense, to be associated with the state/~'. 

6.2.2. Kadanoff  Trans format ions  w i t h  Smal l  p. Whenp  is small, 
it is plausible that the Kadanoff  transformations give rise to a very similar 
situation as in the case of model I. The main difference is that the counter 
terms in (5.10) modify the simple Ising nearest-neighbor interactions in (2.11). 
However, since the QD are of order p2 for small p and vanish unless 1DI is 
even, the basic "up -down ' ,  (~ replaced by - ~ )  symmetry of (2.11) for 
h -- 0 is preserved, and hence the modified object Hamiltonians should give 
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rise to phase transitions at the same values of h, though perhaps larger values 
of  K, already considered in Section 6.1. 

For  larger values of p the counter terms can no longer be treated as a 
perturbation and the argument give n above breaks down. It should be noted 
that  whether p is to be considered " l a rge"  or " sma l l "  depends on the 
magnitude of K. Thus if p has some fixed finite value, no matter  how large, 
one can presumably find a K value which is large enough that peculiarities 
will appear for - p  ~< h ~< p. However, if p is allowed to increase as K 
increases--which is what is done in practice with Kadanoff  transforma- 
t i o n s - t h e  above argument cannot be used to argue for the existence of 
peculiarities. 

Nevertheless, since peculiarities can also appear in the infinite-p limit 
(Section 6.2.4), it is by no means obvious that making p depend on K will 
prevent the Kadanoff  transformation from running into difficulty. 

6.2 .3 .  M o d e l  II and t h e  D e c i m a t i o n  T r a n s f o r m a t i o n .  The trans- 
formation T for model I I  is given in (2.10). The modified object Hamil- 
tonian, analogous to (5.10), is H(cr) plus a term 

p ~ + ~r~, , (6.5) 
J 

with the sign (_+) in each case being that of the corresponding rj. 
Consider the case in which all ~-'s are - 1, K is large, and p is small. 

Then (6.5) amounts to a magnetic field - p  applied at those sites that are 
coupled to the ~-'s. It  is then plausible that a phase transition will occur in 
the modified object system when h passes through a value approximately 
equal to +p/c, where c is the number of sites in a single cell, as in this case 
the total " ave rage"  field in a cell is zero. Thus for small p we expect model 
I I  to show qualitatively similar peculiarities to those discussed above for 
model I. 

In the limit p--> 0% model I yields the identity transformation, well- 
behaved but rather uninteresting. Model I I  in this limit is the "decimation 
transformation."  Each ~(, has precisely the same value as the corresponding 
rj and is no longer a dynamical variable in the modified object Hamiltonian. 
I t  produces, however, via the first term in (2.11), a magnetic field of  magnitude 
+ K on its nearest neighbors. 

Consider the case in which the cells are relatively large squares or 
cubes (in two or three dimensions, respectively), and all the 7's have the 
value - 1. The modified object Hamiltonian refers to a lattice from which a 
small fraction of the sites have been deleted, and the interactions include an 
additional magnetic field - K  on some of the remaining sites, which are 
again a small fraction of the total. Since this extra field is applied at only a 
few sites, it is plausible that its effect can be compensated by a uniform h 
so that the modified object system undergoes a phase transition when h is 
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positive but of  magnitude much less than K, a transition in which <%) is 
discontinuous i f j  is no t  one of the special sites (j). Such a phase transition 
leads to a discontinuity in the formal expression for W' (see Appendix C), 
even though the analog of (5.8) cannot be used directly. 

While the existence of a similar phase transition in the case of a small 
cell is by no means obvious, it should be noted that iterating the model II  
transformation a number of times is equivalent to carrying it out once on a 
larger cell with a modified p value. I f  the initial p is infinite, the modified p 
is also infinite. Hence if peculiarities are absent the first time the transforma- 
tion is applied, they may well appear when the transformation has been 
iterated a few times. 

This last point can be illustrated in terms of the square lattice with 
Hamiltonian (2.11). I f  the g(j) form the sublattice (the squares of one color 
on a checkerboard), the decimation transformation can be carried out once 
exactly, and the resulting transformed Hamiltonian has interactions of short 
range, c5,6~ However, carrying out this transformation twice is equivalent to 
a single transformation in which the cr(j~ form a square lattice with twice the 
lattice constant of the original lattice. In this case an antiferromagnetic 
choice for the ~-j--opposite signs on nearest-neighbor sites on 2a'--leads to 
a modified object system Hamiltonian which is equivalent to that of a square 
lattice, 5 (2.11), with altered coupling constants, and hence can be shown, 
quite rigorously, to possess a phase transition at h = 0 and K sufficiently 
large. 

6.2.4. The Niemeijer and van Laeuwen Trans format ion  on a 
Triangular Lat t ice .  If  the parameter p in the Kadanoff transformation, 
(2.8) or (5.1), is a/lowed to go to infinity, T remains well defined and the result 

s The modified object system Hamiltonian is that of a "decorated" Ising model, which 
can be transformed into an ordinary square model by standard techniques. See, for 
example, Syozi5 TM 

Fig. 3. Part of a possible configuration on 
a triangular lattice when the ~"s associated 
with the cells indicated by circles are all - 1. 
Values of the a's at the different sites are 
indicated by plus and minus signs. 
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is a transformation of the Niemeijer and van Leeuwen or "major i ty  rule" 
type. (~ The situation is perhaps easiest to visualize in the case of a triangular 
lattice. We shall assume that the object system Hamiltonian is of the 
form 

H(a)  = K <ij> ~ '  a~as + K ' ~  ~r,% + h ~ o j ,  (6.6) 

where (ij> stands for a nearest-neighbor and {lrn} a next-nearest-neighbor 
pair of sites. A cell consists of three nearest-neighbor sites forming an 
equilateral triangle (see Fig. 3). The transformation T(r a) vanishes unless 
in each cell the �9 variable for this cell has the same sign as the sum of the 
variables in the cell. When this constraint is satisfied in every cell, T has the 
value 1. 

Consider the modified object Hamiltonian obtained by requiring that 
all the T's be - 1. This amounts to saying that the only configurations of  the 
a's that need be considered are those for which a, = - 1  for at least two of 
the sites in each cell. Figure 3 illustrates a possible configuration. The energy 
of an allowed configuration is determined by (6.6) with no additional 
terms. 

Let us assume that h is very large and positive. Then with high probability 
there will be one e~ equal t o +  1 in each cell. Thus each cell has effectively 
three different states. I f  K' = 0, the maximum H(e)  under these circumstances 
corresponds to a "disordered ground state" in which a very large number of 
configurations have equal energy. If, however, K' takes on a small positive 
or negative value, the maximum H(e)  occurs for a much smaller number of 
"ordered" ground states, each of which possesses a lower symmetry than 
the modified object Hamiltonian (i.e., is invariant under a subgroup of the 
translations and rotations which map the cells into each other). One's 
general experience with systems in which the ground state possesses a broken 
symmetry suggests that if K and K '  decrease from very large values, with 
K'/K fixed, or if K and K '  are fixed and h decreases, the equilibrium state will 
eventually change from one of broken symmetry to one with the same sym- 
metry as the Hamiltonian, with this change taking place at a well-defined 
phase transition. I f  such is the case we would, on the basis of  the argument 
in Appendix C, anticipate a peculiarity in the Corresponding W'. 

On the other hand, if h = 0, the modified object system with all r 's 
equal to - 1 has a ground state--assuming K > 0 and IK'] << K-- in  which 
~ = - 1 for all i. In this case there is no broken symmetry and no reason to 
expect a phase transition for any value of K. Unfortunately, this does not 
mean that W' lacks peculiarities; they may well appear for some alternative 
choice of ~'s. Our investigation of model I suggests that some arrangement 
of ~-'s in which half are equal to + 1 and half are equal to - 1 is probably a 
good place to look for peculiarities at h -- 0. 
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6.3. Comments  on the Peculiar i t ies 

Unfortunately, for reasons discussed in Section 6.1, it is difficult to 
demonstrate rigorously from the existence of singularities in the transforma- 
tions defined formally in the thermodynamic limit that the " r ea l "  W' 
possesses such singularities. It is, in our opinion, most unlikely that there 
exist transformations satisfying properties (i)-(iii) of Section 1 in regions 
where the peculiarities make their (formal) appearance. However, the list 
of possible ways in which things can be going wrong is, unfortunately, 
fairly large. Some possibilities are: 

1. There exists no W' which can be associated with ~' through equi- 
librium equations. 

2. There exists a W'(AIX) which is associated with tL' through the 
equilibrium equations, but it is a discontinuous function of its second 
argument. 

3. There exists a W' associated with tz' through the equilibrium equa- 
tions, but it is not correctly given by taking the thermodynamic limit of (5.8). 

4. The W' associated with t~' through the equilibrium equations is 
correctly given by the limit of (5.8) and is continuous, but is not a smooth 
function of the parameters in the object Hamiltonian. 

If the first possibility is correct, there is no way of defining a trans- 
formation using the method adopted in this paper. Possibility 3 seems unlikely, 
though we cannot at present disprove it. But if true, it raises the troublesome 
issue of the physical significance of a W' that does not correspond to a 
thermodynamic limit. Although the thermodynamic limit, in the sense of 
allowing a finite system to become infinite, is not essential for discussing 
infinite systems, it would seem to be a useful tool for singling out those 
features of infinite systems that are relevant to experiments carried out in the 
laboratory. In any case, our results for model I give us no reason to suppose 
that such a W' would be better behaved than the expressions obtained from 
the thermodynamic limit of (5.8). 

The second possibility seems to us a plausible explanation in those 
cases where the modified object system undergoes a first-order phase transi- 
tion as a function of a parameter in the object system: models I and II when 
p is small, and the decimation transformation. True enough, discontinuity 
of W'(A l X) as a function of  h is no guarantee of discontinuity as a function 
of 2, but it is not implausible that the two should be related. Whereas our 
discussion of equilibrium equations is limited to the case of a continuous W, 
there seems to be no reason why these'equations cannot be generalized to 
allow for a discontinuous IV. Unfortunately, there is a price to be paid for 
such a generalization. Theorem 4.6 is no longer valid and one cannot in 
general expect that a unique (discontinuous) W will be associated with a 
(generalized) Gibbs state. Even if this problem can be surmounted, Theorem 
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4.2 no longer applies and one cannot in general associate a set of interactions 
with a discontinuous W. Thus if it results in a discontinuous W', it is 
hard to see how one can regard a renormalization-group transformation as 
mapping a Hamiltonian onto a Hamittonian. Of course there may be 
ways to circumvent these difficulties, but they obviously require further 
research. 

Possibility 4 seems plausible in those cases in which the "pecul iar"  
phase transitions are continuous ("second-order")  rather than discon- 
t i n uous - a s  may well be the situation in the case of the Neimeijer and van 
Leeuwen transformation on a triangular lattice. Only further investigation 
will permit one to decide between 2 and 4, assuming that one of them is 
correct. 

As a final comment we note that each of the "peculiarities" discussed 
above has the property that it arises from a phase transition, in a modified 
object system, of a sort which seemingly has nothing whatever to do with 
the physically important features of the equilibrium state for the image 
system. Thus in model I the modified object system undergoes a ferro- 
magnetic transition when the image system is far from its own ferromagnetic 
transition. On the other hand, when h = 0, we generated a "peculiari ty" in the 
modified object system by employing an antiferromagnetic arrangement of 
T's. The same sort of observation is valid for the transformations in Sec- 
tion 6.2. 

This peculiar behavior of the "peculiarities" suggests to us that their 
origin may in some sense lie in the demand that H' in (2.7) generate P' 
exactly, including the correct probabilities for configurations that are quite 
unlikely and hence, for most physical applications, unimportant. And it 
raises the intriguing question as to whether the peculiarities we have un- 
covered could not be " c u r e d "  by the device of modifying 0' in a manner 

�9 which makes minor alterations in the probabilities o f " l i ke ly"  configurations 
and major alterations in the probabilities of "unl ikely"  configurations while 
still keeping the latter small. 

7. C O N C L U S I O N S  

Our calculations establish two important results for certain position- 
space renormalization-group calculations: 

1. Kadanoff transformations with finite p have all of the desirable 
properties listed in Section 1 when the activity of the object system is suffi- 
ciently small (or the magnetic field sufficiently large, in  magnetic language): 
The transformation is well-defined, and the image interactions are analytic 
functions of the (real) parameters which appear in the interactions for the 
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object system, and fall off rapidly with distance provided the object interac- 
tions are of sufficiently short range. We have not been able to show that there 
is a region of the parameter space which maps into itself under a Kadanoff 
transformation; the basic difficulty is that a small activity in the object 
system does not guarantee a small activity in the image systems. 

2. There is compelling evidence that Kadanoff transformations, decima- 
tion transformations, and Niemeijer and van Leeuwen transformations 
exhibit "peculiar" behavior for certain classes of object-system Hamil- 
tonians. These peculiarities seem to have nothing to do with phase transitions 
of the object or image states, in the sense that they can occur in cases where 
the /~A(A) and t*A'(A) for the object and image systems, respectively, are 
analytic functions of the parameters in the object-system Hamiltonian. 
Although their precise significance is obscure (see Section 4.1), they almost 
certainly indicate violations of one or more of the desirable properties listed 
in Section 1, and may in particular imply that a renormalization-group 
transformation, as a map of Hamiltonians onto Hamiltonians, is not defined 
(for certain object Hamiltonians) in the thermodynamic limit. 

The overall significance of these results for the renormalization-group 
enterprise in statistical mechanics is not easy to assess. It may a~sist the reader 
if we set forth two opposing viewpoints, optimistic and pessimistic, both of 
which are compatible with the results of this paper. 

The optimist will note that we have demonstrated the existence of a 
nontrivial class of interactions for which at least one type of position-space 
renormalization-group transformation is both well-defined and well-behaved. 
Thus it is certainly not possible for even the most skeptical theoretical 
physicist to dismiss the whole enterprise as mathematical nonsense. Further- 
more, it is reasonable to suppose that the range of applicability of these 
transformations is much wider than that in which they can be proved to give 
good results. The instances in which peculiarities arise fall in limited regions 
of the parameter space for the object system Hamiltonians, and if Fig. 2 is 
typical, this region need not include the critical points where renormalization- 
group methods have been particularly useful. In addition, it is quite possible 
that the peculiarities arise from the very-many-body interactions which are 
always ignored in practical calculations. Thus the latter, at least, need not 
be afflicted with the misleading pathologies which can arise for exact trans- 
formations. 

The pessimist will note that the only cases in which we are certain that 
renormalization-group techniques work well are in the regime of low activity, 
where such methods are not really needed. In other parts of the Hamiltonian 
space, including those in which phase transitions arise, there is reason to 
suspect that renormalization transformations are infested with peculiar 
pathologies having no sensible connection with the physics of the object 
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Hamiltonian, and hence likely to make their unwelcome appearance where 
the theoretician least expects them. These peculiarities strike at the very 
heart of renormalization-group phenomenology: the notion that there are 
smooth transformations "from Hamiltonians to Hamiltonians." Even if the 
first application of a transformation is on firm ground, the examples of Section 
6 suggest that the second, third, or nth step of iterating the transformation 
may still lead into quicksand. The fact that these pathologies do not seem 
to have been reported for the approximate transformations used in practice 
is good reason to suppose that such approximations are misleading in subtle, 
and perhaps less subtle, respects. Indeed, the whole renormalization-group 
procedure may be no more than another (to be sure, very successful) pheno- 
menological approach to phase transitions, rather than, as some enthusiastic 
practitioners would have us believe, the genuine bridge between microscopic 
models and macroscopic physics. 

There is a third position, intermediate between the optimistic and 
pessimistic, which has something to commend it. We suggested in Section 
6.3 that peculiarities might arise in exact transformations due to the demand 
that the image Hamiltonians reproduce the exact probability distribution of 
the image state. Relaxing this demand, and in particular only requiring that 
the probabilities be given (nearly) correctly for the more likely or typical 
configurations, might, perhaps, remove the peculiarities. Since the approxi- 
mate transformations employed in practice do not (so far as we know) 
exhibit the peculiarities we have discussed and since they, as a matter of 
necessity, ignore interactions involving spins on a large number of sites, it 
may well be that they represent a practical realization of the program 
suggested in the preceding sentence. 

If this is the case, one can understand why the very good results obtained 
in actual applications of position-space renormalization-group methods are 
not in contradiction with the results obtained in Section 6. These methods 
could, perhaps, be viewed as analogs of asymptotic series; further refinements 
in the approximations might, after some stage, fail to yield better results. But 
if this is so, it is also possible that some of the strong general conclusions 
which renormalization-group methods yield, such as the "strong scaling" 
connection between certain critical exponents and dimensionality, could be 
in error. Naturally, all of these suggestions are at present quite speculative. 

In conclusion, we wish to comment on two additional points. First, 
while our calculations say nothing about the existence and properties of 
renormalization-group transformations which involve integrating out degrees 
of freedom in momentum space, they do indicate the importance of a precise 
mathematical investigation of these procedures to test their range of validity. 

The second point is one which has often com e up during informal 
discussions of our results and may well have occurred to the reader: Since 
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all the really difficult problems in the chain of transformations indicated in 
(2.7) arise when trying to construct H '  from p', why not simply restrict the 
whole renormalization-group enterprise to a discussion of transformations 
from states to states, (22~ p to O' to 0", etc., and never discuss Hamiltonians ? 

This is certainly a valid question, and our response is as follows: While 
it may be possible to set up the whole renormalization-group machinery of 
flows, eigenoperators near fixed points, and the like in a suitable space of 
states, rather than interactions, the task is far from trivial. To take just one 
example, the critical exponents ~, fl, and v (among others) are defined in 
terms of " temperature differences" from the critical point and whereas a 
temperature difference is a fairly well-defined notion in the space of interac- 
tions, we, at least, do not know how to define it or an analogous quantity in 
the space of states. 

The naive notion that there must be a simple connection between 
formalisms worked' out for spaces of interactions and spaces of states seems 
to be based on the comparative simplicity of the formula, (2.4), that relates 
the two for finite systems. This simplicity vanishes, however, in the thermo- 
dynamic limit, and its disappearance is, in a sense, precisely what permits 
one to discuss in mathematical terms a rich variety of phase transitions. 
Thus, while we would not at all wish to deny the potential value of an approach 
based solely on transformations from states to states, it is at present the name 
of an uncompleted research project rather than an immediate solution to the 
problems discussed in this paper. 

A P P E N D I X A .  REFERENCES A N D  PROOFS FOR THE RESULTS 
OF SECTIONS 3 A N D  4 

Various facts about the topology of • ,  states of infinite lattice systems, 
equilibrium equations, etc., are succinctly set forth in the papers of Lanford 
and Ruelle. (1~ The remarks in this appendix are purely for the benefit 
of physicists who, like ourselves, find this sort of mathematics unfamiliar, 
and may wish to know what references we used and how we thought about 
these problems. 

For  topological concepts, we employed Kelley's General Topology (2a~ 
(page numbers are given in parentheses): Since the topology of Y-f satisfies 
the second, and hence also the first, axiom of countability (pp. 48, 50), it can 
be conveniently characterized by sequences (p. 72). Compactness can be 
checked directly, and is also a consequence of Tychonoff's theorem (p. 143) 
applied to YC = {0, 1} a~ 

For  any infinite set X there is always a sequence of finite sets Aj converg- 
ing to X, and hence a continuous function is uniquely determined by its 
values on finite sets. The other assertions in Theorem 3.1 are proved using 
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compactness in a manner parallel to the corresponding proofs for functions 
on compact sets of real numbers. The conditions given in Theorem 3.2 mean 
that f(Aj) form a Cauchy sequence for a sequence Aj converging to X, and 
can be used to show that the limit is unique (independent of the choice of 
approximating sequence) and continuous. 

We used Halmos' Measure Theory ~24) as the basis for Section 3.2 (page 
numbers are given in parentheses): Subsets of X made up of finite unions 
of mutually disjoint cylinder sets form a Boolean ring ~ (p. 19) on which a 
function tz is defined as follows: The value 

~(IA(A)) = t~A(A) (A.1) 

is assigned to the cylinder set IA(A), and t~ is made additive for finite unions 
of disjoint cylinder sets. Condition (3.9) ensures the consistency of this 
prescription. The result is a finite measure (pp. 30, 31), since 

I~(J~') = a~.s I~(IA(A)) (A.2) 

is [by (3.8)] finite. It possesses (p. 54) a unique extension to a measure t~ on 
the a-ring generated by N. Let f~j be an increasing (f~s C f~s+l) sequence of 
finite subsets converging to s If  f is a continuous function, the sequence of 
simple (p. 95) functions f j  defined by 

fj.(X) = f (X  n f2s) (A.3) 
with integrals given by 

f fj(X) i~(dX) = ~, f(A)l~a~(A) (A.4) 

converges to f (pointwise), and since the latter is bounded (Theorem 3.1), it 
is integrable (p. 110), and its integral is the limit of (A.4) as j---~ oe. This 
result justifies (3.11). Note that (3.11) is not (in general) valid for discon- 
tinuous integrable functions. 

Theorem 3.4 may be proved as follows. Since t~(Jf) is finite, there is a 
finite number M such t h a t / ~ ( f )  is less than M for all j .  Hence, since ft. 
converges uniformly to f ,  given any �9 > 0 there will be a J such that j > / J  
implies that 

t f fJ ILJ(dY)-- f ft~,(dY) <~ l i f t -  f ,  I~j(dY)<EM (A.5) 

Now f itself is uniformly continuous by Theorem 3.1, and therefore there is 
a A such that if X n A is the same as Y n A, f(X) and f ( Y )  can differ by 
at most e. This fact together with the consistency condition (3.9) can be used 
to show that for any larger M ~ A, 

B~=Mf(B)IZjM(B ) - -  A~=A f(A)l~ja(A)l < eM (A.6) 
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Consequently, in view of (3.11), for any j / >  J the integral on the right side 
of (3.14) can differ from that on the left by at most 2~M. 

To prove Theorems 3.5(i), one uses the fact that g is uniformly continuous 
to show that the sums approximating the integral, in analogy with (3.11), 
converge uniformly to a function which, by Theorem 3.1, must be con- 
tinuous. Part (ii) of this theorem is straightforward, as is the first part of 
Theorem 3.6. The second part of Theorem 3.6 is proved by applying Theorem 
3.4 to 

= J TjA(A 1 Y) m(dY) (A.7) /z~'A(A) 

for each A and each A C A. 
In proving Theorem 3.7, note that the continuity of TA(A I Y) in (3.20) 

is an obvious consequence of the continuity of the tk. For Yfixed, the analog 
of (3.8) is obvious, while that of (3.9), because of the simple product form 
of (3.20), can be transformed into 

T~(B[ Y) = ~ TM(B I Y)T~\M(CI Y) (A.8) 
CcA\M 

Hence it suffices to show that if tk are any real numbers, and A any finite set, 

: (kI-~c t k ) ~  ( 1 -  t z ) =  1 (A.9) 
CcA xeA\C 

a result easily established by induction on IAI. [Note that the sums in (A.8) 
and (A.9) include C = ~.] 

Theorem 4.1 may be proved with the help of the following: 

L e m m a  A.1. Given some finite set A and some E > 0, there is a finite 
set A such that 

[O(C)I < ~ (A.10) 
C:Cr e g 

CeA 

provided (4.5) is satisfied. 

Proof. Given (4.2) and (4.5) we can evidently find. for each i e A. a A ~ 
such that 

1r < ,/IAr (A.11) 
C:ieC 
OeA~ 

One then sets A equal to the union of the A~ and observes that each summand 
in (A.10) also occurs in (A.11) for some leA. 

Naturally, the A of the lemma may be chosen to include A. If  this is 
done, and if (3.6) holds for X and Y replaced by B and B', respectively, a 
brief computation shows that 

I W(AIB)- W(AIB') I < ,  (A.12) 
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because when the difference of the W's is written out using (4.4) and (4.3), it 
is seen to consist of a sum of terms, each of which appears on the left side of 
(A.10). Thus the condition of Theorem 3.2 is satisfied. The condition 
(4.6) follows from (4.4) when X is finite, and by continuity when X is 
infinite. 

In Theorem 4.2, (4.8) is a consequence of (4.4). The consistency of the 
limit (4.7) is straightforward; its continuity is a consequence of Theorem 3.1. 
One may use (4.10) to define qb if W is consistent and continuous, and the 
M6bi'us inversion formula (2~) yields 

W(AI ;~ ) = ~ qb(B) (A.13) 

Next, the expression 

W(AIC ) = W(A w CJ~) - W(Cle5 ) (A.14) 

which is a special case of the consistency condition (4.6), may be used 
together with (A.13) to establish (4.9) when X = C is finite. The result for 
infinite X follows by continuity, but since the sum in (4.9) is not in general 
absolutely convergent, it is necessary to specify in what sense it exists. If, 
however, (4.5) is satisfied, the absolute convergence of (4.9) follows from 
Lemma A.1. 

Theorem 4.3 is a consequence of observing that repeated applications of 
the consistency condition (4.6) permit any W(A I X), A of course finite, to be 
expressed as a finite sum of terms of the form W({j}IXj), with j ~ ,  and 
Xj an appropriate subset of A u X. 

The proof  of  Theorem 4.4 is obtained by applying Theorem 3.4 to both 
sides of (4.15) with/~ replaced by/zj. It is easy to show that the convergence 
of t~j to /z  implies the convergence of tx~a(A, dY) to tzA(A, dY), and that 

g(Y) exp Wj(A I Y) ~ g(Y) exp W(A 1 Y) (A. 15) 

uniformly in Y. 
Theorem 4.5 is a consequence of an "elementary compactness argu- 

ment ''(11) which may be constructed as follows. As there are a countable 
number of pairs (A, A) in which A is a finite subset of ~ and A c A, we can 
number them by the positive integers. Since the /~jA(A) for the first pair 
(A, A) lie between 0 and M for every j, one can select a subsequence which 
converges to a number in this same interval. For the second pair a similar 
selection process is carried out with, however, j limited to the subsequence 
obtained when considering the first pair. The selection process continues in 
a similar manner, and, evidently, the sequence consisting of the first element 
of the first subsequence, the second element of the second subsequence, the 
third of the third, etc., converges for every (A, A). 
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To obtain (4.18), set g equal to one in (4.15), so that 

txA(A) = ( eVe(AfY~t~A(~, dY) 

= eW<A'~)~a(~).[f eW(AIY)-w(A'~l~A(rg,dY)/f p.a(~,dY)] (A.16) 
d 

The Y which appears as the second argument of W in (1.16) is a subset of 
2,flA. Hence, since W is uniformly continuous in this argument, we can 
make W(A] Y) - W(AIz) as small as desired by choosing A sufficiently 
large. Thus as A tends to 2~o, the quantity in square brackets in (A.16) 
approaches one, which establishes (4.18). The general case (4.17) is established 
in the case A n Y = 2~ (no loss of generality) by using a particle-hole 
transformation and Theorem 4.7 in the case R = Y. 

In Theorem 4.7, the continuity of W is an immediate consequence of 
(4.23), while consistency can be checked by a straightforward, though 
laborious, calculation using appropriate forms of (4.6). The proof that g is 
a Gibbs state relative to W involves showing that 

I = fg(X) e x p [ -  W(AIX)] gA(A, dX) (1.17) 

is independent of A for A c A. The first step is to note that 

f f (Y) ~(dY) = f f(Y)t~(dY) (A.18) 

i f f a n d f a r e  related by (4.20), an equation which can be verified for continuous 
fus ing  the definitions in (4.20) and (4.21) along with (3.11), or more generally 

by noting that (4.19) maps a subset ~"  of S onto a subset ~ in a manner 

such that t~("/Y) and ~(~Y') are identical. 
We employ (A.18) fo r fde f ined  by 

f (Y)  =g(YtA) exp[-W(A[YlA)] if Y n A  = A (A.19) 
= 0  if Y n A r  

This makes the left side of (A.18) equal to (A.17). With the help of (4.20), 
the right side of (A.18) becomes 

f ~g(X) W(AIX A(R\A))] IxA(A', dX) (A.20) exp[ 
where 

~(X) = g(X A(R\A)) (A.21) 

A' = A A(R n A) (A.22) 

Next, one can show that, for X C ~ \ A ,  

W(AIX A(R\A)) -- W(A'tX ) -- W(R n AJX ) (A.23) 
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Therefore 

I = j- g(X)eW(R~'A'X)e - W(A" hx) tza(A', dX)  (A.24) 

which, by (4.15), is independent of A', and thus/ ,  (A. 17), is independent of A. 
That the t,A n of Theorem 4.8 satisfy (3.8) and (3.9) is a consequence of 

the definitions (4.26) and (4.25). Thus they define a probability measure in 
View of the fact that (4.24) implies that 

/,n(aF) = 1 (A.25) 

For A and B in f2, (4.24) and (4.27) yield the equation 

v~(A va B) = eWn(AIB)vn(B) (A.26) 

This together with (4.26) and (4.27) may be used to check the validity of 
(4.15), using (3.11) to approximate the integrals. 

Assume, on the other hand, that/ ,  is some probability measure satisfying 
(4~14) with W replaced by Wn, and assume that f~ = A. Then, as X (the 
second argument of W,) must lie in 5r it can, in view of (4.27), be 
replaced by ~.  Hence, upon integrating (4.15) with g = 1, we obtain 

e-W(AleOtzA(A ) = / zA(~  ) (A.27) 
and thus 

tza(A' ~A A") = vn(A')tza(;~)/vn(;~) (A.28) 

where A' and A" stand for A c~ f2 and A n (A\f2), respectively. If  (A.24) is 
summed over A' in f~ and A" in A\~2, we obtain 

1 = 21A\n l / zA(~) /vA(Zl )  (A.29) 

which when substituted in (A.28) yields the right-hand side of (4.26). Of 
course, if tzA and/zA n are equal when ~2 c A, they are equal for all A because 
of the consistency condition (3.9). 

A P P E N D I X B .  DERIVATION O F L E M M A 5 . 6  

Unfortunately, there are combinatorial errors in the section of Ref. 13 
containing the result stated in Lemma 5.6. For the most part, these errors 
have been rectified by Del Grosso, (26) but for completeness we provide 
further details. In particular, we list the relevant definitions taking proper 
account of configurations with multiplicities. 

The definition (5.11) of the lattice-gas correlation functions is extended 
to configurations with multiplicities by setting 

X = s (B.1) 
~o, y) '  x ~  s p ( X ) =  
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The truncated correlation functions pr(X) are then given by 

pT(~) _ 0 

X, ~-~ pr(X~) (B.2) 
p(x) = l(X) + 3-i-. Y- xr! 

r~=l (Xl,X2,...,Xn) r=l 
"~rXr = X 

where the sum over configurations is over all decompositions of X into an 
ordered n-tuple (X1,)(2 .... , X.), and 

1, x = ~ (B.3) l(X)= 0, x# 

The truncated correlation functions are related to the Ursell functions (5.45) 
by the equations 

u(X) = f 2or(X) - 1 for IX 1 = 1 (B.4) 
~.2JXlpr(X) for IXI > 1 

If  we define a convolution, 

X! (B.5) 41.4dx) = ~ r162 x~!x2! 
(X1 ,x2) 

XI +X2=X 

we can write (B.2) as 

p = Exp pr = ~=. ~ (p:")'~ (B.6) 

where (pr). = p r . p r , . . .  ,pT with n factors, and (pr)o is the identity (B.3). 
Alternatively, we can write 

pr = Logp  = ~.. 
( - - I )  n+l 

.=1  n ( p -  1)- (B.7) 

The inverse r  is defined by the equations 

(r  %r = l(X) (B.8) 

Let XA be a characteristic function for a set A C ~ ,  

( I  for 2cA 
xA(X) = ~0 for 2 r A (B.9) 

Then a scalar product is defined by 

<x., r = ~ x~(x) r (B. 10) 
x X! 

with the property 

<XA, r = (XA, r r (B. 1 l) 
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In addition, a map Dx is defined by 

(Dx~)(g) = r + Y) 

This map obeys the rules: 

Dx(r162 ~, Dxlr Dx2dP2 

X l + X g = J f  

X! n~ x ~  X~ t n = l  ( X I ,  2 . . . . .  X n )  " 
~ r X r  = X  

If we define the Boltzmann factor 4| by 

(B.12) 

- -  * X2----~. * " "  * �9 Exp 

(B.13) 

i X =  r  = v~x), X = .~ (B.14) 
x # ) ?  

where the energies U(X) are given by (4.3), then in the low-activity region, 
C(qb) < l, the techniques of Ref. 13 give 

p(X) = (X.~, r Dx~| PT(X) = (X~, Dxr174 !) (B.15) 

where r162 is the Ursell-Mayer function given by 

r174 = Log r174 (B.16) 

The proof of the required cluster property now proceeds: 

~_ 17(x) l = x~, ~ / 
X : i ~ X  X : "  
Ixl=~ Ixl=k 

I x l = k  

~< ( T +  Y)! " T! Y! n = 0  T IT 1 Y 

n = O  - -  S ; l S l  = n  + l c - 1  

,~=o k -  1 

- ] z [ C ( O ) k - ~  (B.17) 
[1 - c ( ~ ) ]  ~ 

In the last inequality we used the fact that 

D,r = D, Log r174 = 4, ~ *  D,~| (B. 18) 



Position-Space Renormalization-Group Transformations 543 

(which follows because D~ is a derivation) and the nontrivial result (26) 

s.,s, ~=~ Ir * s!D~r <~ IzlC(OY (B.19) 

The equivalence of the cluster property (BAY) to (5.47) of Lemma 5.6 
follows from (B.4). 

APPENDIX  C. THE ANALOG OF (5.8) W H E N  p BECOMES 
INFINITE 

Whereas the technique discussed below works for the p = + oo limit of 
any of the transformations discussed in this paper, the basic idea is most 
easily understood for decimation transformations and Niemeijer-van 
Leeuwen transformations for cells with an odd number of sites. For  these 
transformations a particular assignment of ~- values means that only a 
certain class of configurations of the object system, which we assume to be 
a finite set f~, are permitted. The allowed configurations of such a modified 
object Hamiltonian receive, however, a Boltzmann weight determined by 
H(a) with no counter terms. Hence the same reasoning which resulted in 
(5.8) yields, in the present case, a formula 

exp[Wa'(A'lB')] = ~ exp U(C)/ ~ exp U(C) (C.1) 
Grs~(A'uB ") ] C ~ ( B ' )  

where A' and B' are subsets of the image system ~2', and shall remain fixed 
throughout the following discussion, and W(C') is the set of object-system 
configurations permitted if ~-~ is + 1 for all i in C'  and - 1 for all other i in 
~'~'. 

Let D be those sites in ~ whose spin values are constrained by the values 
of r~ for i in A'. Then there are classes 9 +  and 9 _  of subsets of D and a 
class d ~ of subsets of ~ /D  such that C is in Cg(B') if and only if 

C (~ D e ~ _  (C.2) 
and 

C ~ (f~/D) e o z (C.3) 

whereas C is in ~f(A' u B') if and only if 

C n D ~ ~@+ (C.4) 

is satisfied together with (C.3). We may, therefore, reexpress the right side 
of (C.1) as 
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Next write 

D ~ . ~  + 

where 

eU(DUE) ~ eU(B) ~ e W(DIE) 
De.@+ 

= e tr 'E 'e~  e W'DIE' = e ~  e U~~ (C.6) 
DE~ _ D6~_ 

Note that if the interactions are of  finite range, O(E) only depends on the 
portion of E ' t h a t  is near D. In particular, for (2.11), 0 only depends on 
E r~ D',  where D'  denotes all sites that are nearest neighbors of sites in D 
but not themselves members of D. On the other hand, if the interactions are 
not of  finite range but W is continuous, (C.7) defines a function 0 which is 
continuous on ~ .  

The combination of (C. 1), (C.5), and (C.6) permits us to write 

exp Wa'(A'[B') = (exp O)a,B, (C.8) 

where the average on the right side is over the configurations C in Cg(B') 
with the weights appearing in the denominator of (C.1), and 

O(C) = O(C c~ (~ \D))  (C.9) 

depends only on the properties of the configurations outside the set D. 
In order to produce peculiarities in W', we of course take the formal 

limit of (C.8) as ~ and ~ '  become infinite, with 

B ' =  ~ ' n X '  

for some (in general infinite) X' .  The existence of a limit is no more (or less) 
problematical than it is in the case of (5.8) when the arguments of  Section 5 
do not apply. 
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